Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

نویسندگان

  • Eric Cancès
  • Rachida Chakir
  • Yvon Maday
چکیده

We provide a priori error estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic ThomasFermi-von Weizsäcker (TFW) model and for the spectral discretization of the Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the ground state energy and density of molecular systems in the condensed phase. The TFW model is stricly convex with respect to the electronic density, and allows for a comprehensive analysis. This is not the case for the Kohn-Sham LDA model, for which the uniqueness of the ground state electronic density is not guaranteed. Under a coercivity assumption on the second order optimality condition, we prove that for large enough energy cut-offs, the discretized Kohn-Sham LDA problem has a minimizer in the vicinity of any Kohn-Sham ground state, and that this minimizer is unique up to unitary transform. We then derive optimal a priori error estimates for the spectral discretization method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of the planewave discretization of orbital-free and Kohn-Sham models Part I: The Thomas-Fermi-von Weizsäcker model

We provide a priori error estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermivon Weizsäcker (TFW) model and of the Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the ground state energy and density of molecular systems in the condensed phase. The TFW model is st...

متن کامل

A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models

In this article, we propose a post-processing of the planewave solution of the Kohn–Sham LDA model with pseudopotentials. This post-processing is based upon the fact that the exact solution can be interpreted as a perturbation of the approximate solution, allowing us to compute corrections for both the eigenfunctions and the eigenvalues of the problem in order to increase the accuracy. Indeed, ...

متن کامل

Electronic Structure Studies on Reactive Nano - Films

The present research effort developed a real-space formulation for orbital-free density functional theory and Kohn-Sham density functional theory in order to conduct large-scale electronic structure calculations that take an important step towards addressing the prevailing domain-size and geometry limitations of existing electronic-structure codes. In particular, by combining the real-space for...

متن کامل

Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of th...

متن کامل

1 Development of quasi - continuum reduction of orbital - free

This report summarizes the research objectives achieved in this project during the period 0301-2009 to 12-31-2011. Computational techniques have been developed that enable electronic structure calculations at macroscopic scales by seamless bridging of the quantum length-scale with continuum. The various components of the developed multi-scale scheme include (i) real-space formulation of density...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011